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Figure 1. Comparison of our method against previous work on parametric painting algorithms. Panels (a) through (c) demonstrate our
algorithm’s capability to render scenes in various styles: abstract with simplified forms and abstract with a heavy emphasis on thick loose
strokes, texture, and a lack of clear form (a), painterly impressionistic style with dynamic strokes and emphasis on effect (b), and realistic
style capturing both micro and macro structures with high fidelity (c). These are juxtaposed against existing methods: Stylized Neural
Painting (SNP) [40] (e), Paint Transformer (PT) [23] (f), and Learning to Paint (L2P) [15] (g), which exhibit limitations such as imprecise
edge depiction and a lack of stylistic diversity. SNP and PT use rigid, blocky strokes that are unable to capture fine details, edges and
shapes. L2P captures details better, although yields blurry results with visible seams at large resolutions. The input image is displayed
in panel (d) for reference. This comparison underscores our method’s superior ability to balance detail retention with stylistic expression.
Zoom-in is encouraged to see the nuances of each work.

Abstract

We introduce a novel image-to-painting method that fa-
cilitates the creation of large-scale, high-fidelity paintings
with human-like quality and stylistic variation. To process
large images and gain control over the painting process,
we introduce a segmentation-based painting process and
a dynamic attention map approach inspired by human
painting strategies, allowing optimization of brush strokes
to proceed in batches over different image regions, thereby

capturing both large-scale structure and fine details, while
also allowing stylistic control over detail. Our optimized
batch processing and patch-based loss framework en-
able efficient handling of large canvases, ensuring our
painted outputs are both aesthetically compelling and
functionally superior as compared to previous methods,
as confirmed by rigorous evaluations. Code available at:
https://github.com/manuelladron/semantic based painting.git
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1. Introduction

Painting is the world’s oldest technology for creating visual
imagery, and a continuing source of fascination and artis-
tic expression. Representational painting is a complex pro-
cess where an artist creates a picture of a realistic scene
from a series of brush strokes. Artists use a variety of
strategies to determine where and how to paint, and differ-
ent strategies produce different painting styles. For exam-
ple, a painter might work in a coarse-to-fine manner, be-
ginning with general shapes and then refining details, or
in a semantic-region-based manner, painting areas such as
sky, mountains, and buildings sequentially; the latter strat-
egy may produce a more segmented style than the former,
with different styles for different objects.

These strategies, in part, are a function of human work-
ing memory and foveal vision: unlike optimizers, artists
cannot simultaneously work on every part of a picture in
parallel. They work piece-by-piece, focusing on one region
or aspect of a painting at a time [3, 4, 7, 28, 35, 36], before
moving on to the next.

The computational stroke-based painting problem is:
given an input photograph, generate a painting to represent
the photograph, parameterized by a set of brush strokes,
which themselves are parameterized by their colors, con-
trol curves and thicknesses, with optional texturing [10, 13].
These methods allow styles to be defined directly in terms
of brush stroke properties, with further additional user con-
trol possible on the strokes themselves, e.g., [27]. Cur-
rent methods treat this as an optimization problem: using
a limited set of brush strokes, approximate the input im-
age as closely as possible [5, 12, 15, 23, 25, 31, 40]. By
varying the level of approximation, a user should be able
to select from more- or less- abstract styles, and selecting
different placement strategies should produce qualitatively
different styles. Moreover, robotic painting systems require
explicitly-defined brush strokes, e.g., [1, 8, 21, 31], which
are not available with pixel-based stylization techniques.

Despite recent progress, existing methods for this prob-
lem suffer from a limited ability to perform this optimiza-
tion well for large images and limited user control. State-
of-the-art methods either jointly optimize a large collection
of strokes, or train a network to generate them. These ap-
proaches are limited by the problem of generating strokes
uniformly for an input image, which becomes impractical
as the input size increases. Hence, these methods do not
generate high-fidelity results for even moderate-sized input
images, thereby limiting the level of abstraction and control
[15, 23, 34, 40]. Moreover, they lack mechanisms to mimic
varied artistic strategies, such as applying different styles
for different scene elements, and coarse-to-fine painting.

Inspired by these observations, we propose a new ap-
proach to generating stroke-based paintings from pho-
tographs. We first structure the entire painting process in

layers by isolating different semantic parts of the canvas.
Then dynamic attention maps guide the painting process to
refine areas that need more detail, and differentiable strokes
are optimized sequentially within each region. This sequen-
tial optimization process allows us to generate strokes over
a large image canvas efficiently, in contrast to methods that
produce pictures as a single joint optimization. It also ap-
proximates human painting strategies that operate sequen-
tially on different image regions, rather than jointly opti-
mizing all strokes at once. Several objective function pa-
rameters are provided to control the style, including limiting
the number of strokes and level of detail for each semantic
region, providing a continuum from realism to abstraction.

Quantitative and qualitative evaluations show that our
method achieves a greater range of high-fidelity reconstruc-
tions to abstract imagery, while also producing high-quality
results at large image sizes.

2. Related Work

Early stroke-based-rendering (SBR) approaches varied
from procedural, rule-based systems without optimization
[10, 22], including layering strokes in a coarse-to-fine fash-
ion. Procedural methods effectively produce captivating
paintings, but their rigidity in stroke placement is a notable
limitation. In principle, optimization-based SBR overcomes
this constraint, offering greater adaptability in stroke posi-
tioning and more accurately encoding artist choices [12].
Such methods have evolved from heuristic-based optimiza-
tion to more advanced techniques such as EM-like packing
algorithms for arranging non-overlapping stroke primitives
[13, 29], with applications extending to 3D model styliza-
tion [24, 32]. Recent SBR methods employ deep networks
trained to simulate a painting agent through reconstruction
losses, involving pixel and perceptual losses [17, 38], facili-
tated by differentiable rendering engines [20]. However, the
difficulty of optimizing large collections of strokes over an
entire image remains challenging.

Reinforcement Learning (RL) has become prominent
in SBR for simulating decision-making in painting agents
[5, 15, 16, 25, 30, 34, 37], with diverse applications ranging
from detailed reconstructions to robotic painting. SPIRAL
[5] and its enhanced version SPIRAL++ [25] are notewor-
thy for their adversarial training algorithms, despite produc-
ing less defined images. Nonetheless, both methods strug-
gle with interpretability, style control, and accurate input re-
constructions. Some RL methods focus on accurate depic-
tion [15, 34]. Huang et al.’s method [15] needs thousands
of tiny strokes to reconstruct an image, although becomes
blurry for high resolution images, and it is stylistically lim-
ited.

Deep learning methods like Paint Transformer [23] uti-
lize a CNN-Transformer architecture to predict stroke se-
quences, showing promise in generalization despite pattern
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Figure 2. Overall Painting Framework. Our framework models the painting process as a set of sequential painting passes. (a) Pipeline of
each painting pass k, which is composed by four parts: attention patches, cropping, optimization, and pasting. (b) Semantic layers and
patch strategies. (c) Stroke optimization module with patch-loss.

repetition in results. RNN-based models have also been ex-
plored for distinct line drawing and sketching [9, 19, 26,
39], with our method adopting similar attention mecha-
nisms [26].

Additionally, recent works have leveraged direct differ-
entiable optimization for stroke placement [20, 40], with
style variations often induced by style-transfer techniques
in pixel space [6, 17].

3. Method

Our goal is to efficiently optimize a collection of stroke pa-
rameters that define a large-scale painting from a given im-
age, capturing micro and macro structures with high fidelity,
and providing control for stylistic variation. Our system
takes as input an image X , and style parameters, encapsu-
lated by three style presets: “realistic,” “painterly,” and “ab-
straction.” Then, our objective is to optimize a parameter
vector Ȳ of strokes, which, when rendered on a canvas C,
will approximate the given image X as a stylized painting.
Our scalable solution accommodates varying sizes and as-
pect ratios through batch-patch optimization, cropping the
input and canvas into a set of 128 ⇥ 128 patches, which
are reassembled after the optimization process to match the
original image scale.

Inspired by human painting techniques, and to provide
more control over the painting process, we first use a seg-
mentation network that decomposes the painting into se-
mantic areas, and then employ dynamic attention maps to

determine where to paint. An overview of our framework is
shown in Figure 2. For information on the parametrization
of styles and implementation details, refer to supplemental.

3.1. Layered Painting and Patch-Based Optimiza-

tion

The set of paint strokes is separated into K layers, one
for each input semantic region. Applying separate painting
styles or details for different regions allows stylistic control
over separate scene elements. For each painting layer, the
canvas is divided into a set of 128⇥ 128 patches, where all
stroke parameters in each patch are batch-optimized; dif-
ferent layers may have different numbers of patches, as a
function of the semantic layer’s area.

The optimization is performed in a series of P passes,
designed to progress from general, broader strokes to intri-
cate, finer details, akin to the approach of a traditional artist
[11]. For each painting pass p, our method applies an opti-
mization phase to each of the K semantic layers, following
a coarse-to-fine procedure.

Let P denote the total number of painting passes, and
let’s denote the number of semantic layers as K. We de-
fine kp as the layer index being refined in pass p, where
kp 2 {0, 1, 2, ...,K � 1}. Overall, our goal is to minimize
a reconstruction loss Lrec summed over the entire image.
We specify this loss later in the paper. At a given pass, the
goal is to optimize just the strokes that appear in some layer
k. The objective for each layer k during optimization is to
optimize a subset of the loss just for the patches and strokes
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in this layer: argminȳk

PNk

i=1 Lrec(Xk,i, Ck,i(ȳk)), where
Xk,i is the i-th patch of the semantic region k of the in-
put image, and Ck,i(ȳk) denotes the i-th patch of the can-
vas at layer k, parameterized by the stroke parameters ȳk.
The number of layers K adapts to each painting based on
the unique semantic content of the input image, and it is
determined automatically by the segmentation network. In
cases where the input image lacks semantic distinction, or
if semantic assistance is disabled, a single layer approach is
adopted (K = 1), involving the entire canvas. We use the
DETR model [2], which consists of a CNN (ResNet) back-
bone followed by an encoder-decoder Transformer, trained
on the COCO Panoptic Segmentation task.

Starting with the input image X , we derive all segmen-
tation layers and compute each binary mask, which is then
used to initialize the vector of stroke parameters Ȳkp . Upon
the completion of the optimization steps, strokes that fall
outside the designated segmented area are filtered out based
on a threshold �.

Dynamic Attention Maps. While painting, any human
painter must continually decide where next to paint brush
strokes, and different painters will make these choices dif-
ferently. Our system represents this process by dynamic
attention maps, with two distinct strategies: uniform, and
selective (see Figure 2(b)). The former is based on a uni-
form distribution across the canvas, yielding patches in a
consistently-spaced grid covering the entire image. The lat-
ter identifies the V patches with the highest error for atten-
tion, where V is a user-determined style parameter. This
error is computed as L1 loss between the canvas and im-
age patches. We found that just using L1 loss is enough to
provide a good painting guidance, making the process more
efficient in comparison to using perceptual losses.

The uniform approach ensures an unbiased and uniform
distribution of detail throughout the painting, and is typ-
ically reserved for the foundational stages of a painting,
generally producing higher realistic painting than the selec-
tive approach, which generates a more human-like, organic
painterly style paintings.

Stroke Initialization, Renderer, and Blending. We use
the stroke parameter representation and differentiable ren-
derer, G, provided by [15] (for more details refer to supple-
mental). Each stroke is parameterized by a 13-dimensional
tuple {x0, y0, x1, y1, x2, y2, r0, r2, t0, t2, R,G,B} that en-
codes the start, middle and end points of a quadratic Bézier
curve, radii and transparency at the start and end points, and
RGB color of the stroke. For each 128 ⇥ 128 patch in the
canvas, we distribute T stroke parameters evenly in a regu-
lar array.

Strokes are composited into a patch with soft blending:
M  Mt�1� (1�G(sj)a) +G(sj)c where sj are the pa-

rameters of the j-th stroke, M is a canvas patch, and G(sj)a
and G(sj)c are the alpha channel and the stroke given by
the differentiable renderer G, respectively. However, for se-
mantic layers, the corresponding binary mask ↵k is used:
Mk  Mkt�1 � (1�G(sj)a) +G(sj)c � ↵k

3.2. Optimization and Loss Functions.

At a given pass p, for each layer k in such a pass, we op-
timize all stroke parameters from all Nk patches in batch.
That is, we optimize a matrix SN⇥T⇥13

k altogether, where T
is the stroke budget, and instead of computing the loss func-
tion over the entire canvas, we use a patch loss described
earlier (see Figure 2 (c)). This allows us to perform these
optimizations much more efficiently than optimizing over
the entire canvas. Formally, given a set of canvas patches
and the same set of reference image’s patches, our overall
loss function is:

Lrec =
1

N

NX

n=0

↵Lpixeln + �Lpercn (1)

where N is the total number of patches. For our pixel loss,
we use the L1 function, Lpixel = |C � I|, where C is a can-
vas and I a reference image. For perceptual loss, we use the
feature vectors from a pretrained VGG16 [38]. Specifically,
let Vij = {V 1

ij , ..., V
k
ij} and Wij = {W 1

ij , ...,W
k
ij} be a set

of k feature vectors extracted from image I and canvas CT ,
respectively. We use cosine similarity as follows:

Lperc = cos ✓ =
KX

k

X

i,j

ViWj

kVik kWjk
(2)

where i, j index the spatial dimensions of the feature
maps V and W , and K the extracted layers from VGG16
trained on ImageNet [33]. We use layers 1, 3, 6, 8, 11, 13,
15, 22 and 29, and optimize via gradient descent and use
Adam optimizer [18] to find the set of strokes Skp .

Figure 3. Coarse-to-fine approach for a painterly portrait of a
woman. (a) Initial coarse layer lays foundational strokes for a later
refinement (b), guided by dynamic attention maps (insets).
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Figure 4. Our approach offers enhanced precision over the can-
vas’s semantic regions, directing specific emphases in the artwork:
(a) accentuates the foliage, capturing its essence, while (b) concen-
trates on highlighting the architectural details of the building.

4. Experiments

We now demonstrate stylistic effects achievable with our
method, and compare with state-of-the-art methods.

The semantic control provided by our method allows a
user to apply different styles to different regions, akin to
classical artistic techniques where backgrounds might be
abstracted for emphasis on detailed foregrounds and vice-
versa, reminiscent of techniques observed in classical art-
works [14], and specific subjects or objects may be high-
lighted. The versatility of this approach, resulting in varied
visual interpretations based on the areas of emphasis, is il-
lustrated in Figure 1 (a) and (c), Figure 4, Figure 5, Figure 6,
and Figure 8.

4.1. Style Variations

Painting techniques and strategies lead to different styles,
and our algorithm can output a set of stylistic outputs, rang-
ing from realism to abstraction and painterly styles.

Realism. We begin by demonstrating a style that pre-
cisely reproduces the target image. Previous methods can-
not achieve accurate image reproduction through optimiza-
tion; this limits their ability to define new styles, since many
styles cannot be accurately optimized, e.g., fine-scale de-
tails cannot be preserved. While most painterly styles in-
volve greater degrees of abstraction, this style illustrates
the superior performance of our sequential patch-based op-
timization, which can achieve accurate image reproduction.

For this style, we use a single layer (K = 1), without
semantic segmentation, and run four coarse-to-fine paint-
ing passes (P = 4). The number of strokes s per patch
increases with each layer, following the formula sp =

(p + 5)2. Stroke thicknesses are halved across consecu-
tive passes, given by the formula: ap = 21�pa1, where ap
and a1 are the p-th and thicknesses. This approach ensures
that the painting captures finer details, rendering a realis-
tic appearance. Paintings employing this methodology are
showcased in Figure 1 (c), Figure 3, Figure 5 (b), Figure 6
(c) top, and Figure 7 (fourth row). We use perceptual losses
along with pixel losses to capture higher frequency areas.
That is, we optimize the stroke parameters following Equa-
tion (1), where ↵ = 1 and � = 0.01. This style achieves su-
perior reconstruction details than previous methods as seen
in Section 4.2, and in Figure 1 (c), and Figure 7 (fourth
row). Analyzing these paintings, high-frequency areas are
captured with higher definition than previous methods, that
is, strokes follow edges and shapes more accurately, result-
ing in higher-fidelity paintings.

Painterly Style. The goal of this style is to generate a
more loose representation of the input image, yet captur-
ing enough details so that the original scene is represented.
Leveraging semantic segmentation, our approach mirrors
the human painting process, working piece-by-piece, fo-
cusing on one region or aspect of a painting at a time, and
generating different painterly styles. Instead of a uniformly
detailed canvas, semantic control offers refined governance
over stroke distribution, tailored to distinct semantic zones.
Our dynamic attention maps, inspired by visual working
memory, are configured to a selective mode, honing in on
areas necessitating enhanced detail. The stroke parame-
ters are optimized solely based on pixel loss, that is, we
set � = 0 in Equation (1). For each painting pass p, we
found enough to have a stroke budget of 16 strokes per
patch, which yields a distinctive painterly style. This ap-
proach prioritizes artistic expression over mere replication,
yielding a rendition that captures the essence rather than the
exact likeness of the input image, as demonstrated in Fig-
ure 1 (b), Figure 4, Figure 5 (a), Figure 6 (a, bottom), (b,
top), and Figure 8 (b,c). In these figures, we can see that this
style has the loose quality of typical impressionistic paint-
ings, yet forms are defined and the subject matter is clear.

Semantic Abstraction. Unlike the previous painterly
style, which still prioritizes a good balance between accu-
racy and expression, this style leans with a heavier empha-
sis on expression. By adjusting the optimization procedure
over painting passes P and semantic layers K, we can gen-
erate abstract representations, offering a novel painting syn-
thesis. To do this, the user associates different optimization
parameters such as P , stroke budget, and number of selec-
tive dynamic attention maps V to different semantic layers
k. Since this style does not focus on high-fidelity, stroke
parameters are optimized based on L1 loss, setting � = 0
in Equation (1). This generates organic and abstract repre-
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Figure 5. Different painterly styles given the same input. (a) Painterly style achieved by the use of our segmentation pipeline and selective
dynamic attention maps. (b) Realistic style achieved by using uniform dynamic maps.

Figure 6. Demonstration of control over the painting. (a) The
painting focal point falls in the buildings while leaving the vegeta-
tion abstracted. (b) The motorcycle is emphasized by adding more
detail than the background, which is coarsely painted.

sentations of the object of interest, focusing on expression
over representation, and can be applied universally or se-
lectively to accentuate specific semantic zones. See how in
Figure 1 (a), and Figure 8 (a), the abstract paintings loosely
define the subject matter, prioritizing heavy abstract expres-
sionism, in contrast to the painterly style, which captures
the subject matter, but still leaving room to the viewer’s in-
terpretation. A practical illustration: buildings can be ren-
dered in finer detail to spotlight their significance, whereas
adjacent elements like streets, pedestrians, or foliage are ab-
stracted, adding an artistic bias to the scene (refer to Fig-
ure 4 and Figure 6). As a result, the painting looks more
intentional, organic and fluid, similar to how human artists
paint. Figure 1 (a) and Figure 8 (a) are excellent exam-

Control Style Var. Large-Scale High-low Freq.

PT 7 7 X 7
SNP 7 X X 7
L2P 7 7 7 X
Ours X X X X

Table 1. Comparison with previous methods on attributes like
painting control, style variations, large-scale parametric painting,
and high-low frequency capture.

ples of the human-like qualities of this style, with brush-
work being loose and gestural, creating a rich tapestry of
dynamic shapes. Other examples using this style are shown
in Figure 7 (bottom row), where semantic layers are en-
tirely abstracted from their context. For further details on
the parametrization of this style, please refer to supplemen-
tary material.

4.2. Comparison with State-of-the-Art

We evaluate our work against three notable parametric
methods: an optimization-based method “Stylized Neural
Painting” (SNP) [40], a learning-based method with Trans-
former “Paint Transformer” (PT) [23], and a RL method
“Learning to Paint” (L2P) [15]. Our method stands out
by supporting any resolution or aspect ratio, preserving art-
work quality, unlike L2P and PT which resize outputs, often
reducing quality. Moreover, SNP is limited to square for-
mats, restricting its application. An overview of algorith-
mic attributes is shown in Table 1. While all methods can
output paintings at high resolutions, L2P’s results are blurry
and seams are visible. For a fair comparison, all paintings
have been generated using the same number of strokes.

Qualitative Comparison A visual comparison of our
method against previous methods is depicted in Figure 1,
Figure 7 and Figure 8. For more comparisons at larger scale,
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Method Realism Visual Appeal

Ours vs. PT [23] 81.82% 79.55%
Ours vs. SNP [40] 100% 70.45%
Ours vs. L2P [15] 95.45% 56.82%

Table 2. Qualitative evaluation based on user preference. This
table shows a 2-way comparison between our method and previous
methods.

refer to supplemental. Figure 1 shows how SNP and PT
generate impressionistic-like paintings, although the brush-
work is patchy and rigid, and both methods are unable to
capture edges. This is further seen in Figure 7, where PT in-
troduces highly contrasted brush sizes for different semantic
regions, and noise in high-frequency areas. SNP’s rigid and
uniform patches do not capture well finer details. Out of
the previous methods, L2P captures micro and macro struc-
tures better, in a realistic style, although at large resolutions
produces blurry results, and it is unable to generate other
painting styles. This is further observed in Figure 9, where
L2P cannot distinguish between semantic areas or objects,
treating the entire canvas with the same emphasis.

User Study. We assessed our painting method’s effective-
ness through a user study involving 30 participants, con-
trasting our outputs with three existing techniques. Par-
ticipants judged the paintings based on realism and visual
appeal across six painting sets, for a total of 12 questions,
using a two-way comparison, and collecting 360 responses.
As shown in Table 2, our method is preferred over existing
methods in all tasks. Overall, our method substantially out-
performs previous methods in realism, selected by 92.42%
of the users. Our method is also preferred in the visual ap-
peal task, voted by 68.94%. When evaluating our method
on visual appeal, our strongest competitor is L2P, selected
by 43.18% of the participants.

Quantitative Comparison To further substantiate our
claims, we compare the performance of our model on re-
construction of the original input against previous methods,
and use pixel loss L1 and perceptual loss Lperc as evalua-

Ours SNP PT L2P

L1 # Lperc " L1 # Lperc " L1 # Lperc " L1 # Lperc "
Objects 0.038 0.680 0.052 0.554 0.085 0.480 0.053 0.586
Buildings 0.026 0.720 0.049 0.515 0.071 0.490 0.045 0.632
Streets 0.031 0.709 0.041 0.582 0.072 0.486 0.041 0.620
Animals 0.016 0.745 0.029 0.573 0.054 0.535 0.026 0.647

Table 3. Quantitative results on realistic style across different im-
age domains. All methods use the same number of strokes (4000)
on a 512x512 canvas.

L2P [15]

SNP [40]

PT [23]

Ours - Realistic

Ours - Abstract

Figure 7. Comparison of four parametric painting tech-
niques—L2P, SNP, PT, and our approach—across three different
scenarios. Our method’s outcomes show improved detail rendi-
tion and variability. Our realistic approach finely details both high
and low-frequency elements, accurately rendering tree branches
and window frames. Note L2P’s realistic yet blurry style, SNP’s
broad painterly effect which struggles to capture fine details (tree
branches or windows framing), and PT’s inconsistent detail and
brushstroke scale. Zoom-in recommended for full appreciation of
textural nuances.

tion metrics, reported in Table 3. We select 10 images from
each domain, resize them to 512x512 and set the number of
strokes to 4000. Our method outperforms previous meth-
ods in high-fidelity realistic paintings across all evaluated
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(a) Ours - Abstract (b) Ours - Painterly (c) Ours - Painterly

Figure 8. Painterly styles with a different degree of abstraction. This style generates organic human-like paintings, biasing the painting
towards different structures.

Figure 9. Stroke distribution comparison of Figure 7 middle col-
umn. SNP (a) and PT (c) exhibit a disparse clustering, while L2P
(b) paints evenly in a scene-agnostic way. Our method (d) com-
bines the selective focus of SNP with the clarity of PT, indicating
a refined approach to applying strokes.

domains, which is consistent with the qualitative results ob-
tained in our user study.

To visually quantify how each method places strokes on
the canvas, Figure 9 compares the stroke distributions for
the middle column paintings shown in Figure 7 and Fig-
ure 8. Our method (d) shows a more intentional stroke
placement and clarity in stroke application. In contrast,
SNP (a) shows a scattered, uniform treatment of scene ele-
ments, while our approach strategically focuses on two key
areas, corresponding to the vegetation, enhancing the com-
position’s structure. L2P (b) applies strokes uniformly in
a scene-agnostic way, lacking the focal emphasis of our
method. PT (c) creates abrupt density transitions due to
its multi-scale approach, unsuitable for gradual tonal shifts,
and fails to disentangle high-density areas, not differenti-
ating between scene elements like trees and roads. Our
method, however, clearly delineates regions with varying
stroke densities, offering a nuanced and intentional subject
representation. See supplemental for additional details.

Efficiency We compare the efficiency of the different pre-
vious methods in a single RTX A6000 Nvidia GPU for a
single image (see Table 4). While neural methods require

Method Optimization-based Neural-based

Ours Optim [40] Transf [23] RL [15]

Res. 1024 99.60s 447.10s 0.514s 0.537s

Req. Training No No Yes Yes

Use Dataset No No No Yes

Table 4. Inference efficiency for different methods, measured in
seconds for a single image at 1024x1024 and 1600 strokes.

training, they are faster at inference time than optimization
methods. However, when comparing with previous opti-
mization methods [40], our method is significantly faster
(4x) for the same number of strokes (1600) and resolution
size (1024x1024). This is specially important because op-
timization methods require an optimization process per im-
age. For a fair comparison, we use the uniform setting for
our dynamic maps, and set the style to realism.

5. Conclusion

This paper presents a semantic-based painting method that
is more controllable, produces more visually appealing
paintings, and achieves better realistic paintings than pre-
vious methods, as validated in the user studies and quanti-
tative evaluations. Contrary to previous methods, our work
offers a controllable framework that, besides realism, also
aims for painterly and abstracted styles without the need
for style-transfer like techniques. Furthermore, it is able
to paint at any aspect ratio without further resizing steps.
Future work includes incorporating a differentiable pasting
module that enables general-canvas level loss, along with
our patch loss strategy, for further exploration in stylization.
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