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Segmentation-Based Parametric Painting

Supplementary Material

Figure 10. Styles: (a) Expressionist, consisting of thick, textured, loose and low fidelity representation where subject matter is not a priority.
(b) Painterly, think, shaped strokes with a loose touch, enough to balance the scene recognition and not yield a high-fidelity painting style,
(c) Abstract, scattered, fewer strokes that capture the essence of the scene.

Realistic Painterly Abstract Expressionist Abstract

Num. Passes (P) 4 4 1 2
Num. layers (K) 1 var var var

Num. Strokes (T) [36, 49, 64, 81] [9, 16, 16, 9] [9] [9, 16]
Num. DAMs (V) (H//128 ⇤W//128) [25, 25, 50] (H//128 ⇤W//128) [25, 25]
DAMs mode U U if p = 1 else S U S

Table 5. Style hyperparameters by default. Users can fine-tune
these parameters for further control over the desire styles.

Paintings at Large Resolution600

More paintings at large resolution are shown at the end of601

this document.602

6. Optimization Method603

This section provides further implementation details of our604

method. The pseudocode is shown in Algorithm 2. We es-605

tablish the nomenclature as follows:606

• Input image X , canvas C607

• Number of painting passes P (int), from 1 to P608

• Number of painting layers K (int), from 0 to K � 1609

• Number of Dynamic Attention Maps (DAMs), V (int).610

If uniform, DAMs follow an array of 128 ⇥ 128 patches611

uniformly distributed on image X and canvas C. V =612

(H//128 ⇤W//128)613

• Number of stroke parameters, T (int), per DAM, different614

per p, and can be different per k615

• Semantic Segmentation Network, W , determines K616

6.1. Implementation Details 617

For all styles, we use Adam optimizer [18] with a learn- 618

ing rate of 0.0002 and betas 0.5 and 0.99. We optimize all 619

painting layers for 300 iterations, and set the canvas back- 620

ground color to black. For our semantic segmentation net- 621

work, we use the DETR model [2], available at Hugging 622

Face, which consists of a CNN (ResNet) backbone followed 623

by an encoder-decoder Transformer, trained on the COCO 624

Panoptic Segmentation task. 625

6.2. Style Parameters 626

Our method takes in an image X and a style input as a string 627

between “realistic”, “painterly”, “abstract”, and “expres- 628

sionist”. Note that our optimization method does not apply 629

transfer style techniques. Rather, we adjust optimization 630

hyper-parameters such as the amount of dynamic attention 631

maps (DAMs), stroke budget, or painting passes, to achieve 632

different style variations. We found the combination of such 633

parameters empirically, and we keep the parameters shown 634

at Table 5 as default. However, users can change it to fine- 635

tune the paintings to further adapt the painting. All styles 636

follow a coarse-to-fine strategy, halving the stroke thickness 637

following the formula: ap = 21�p
a1, where a1 = 0.8⇤128, 638

that is, the 80% of the length of a 128⇥ 128 patch. The set 639

of segmentation layers {k}K�1
0 is generated by a segmen- 640

tation network W , such that {k} = W (X). 641
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Realistic Style Our realistic style is generated by setting642

P = 4, K = 1, setting DAMs to uniform, and thus V =643

(H//128 ⇤W//128). The stroke budget T on each patch644

follows sp = (p+ 5)2.645

Painterly Style The painterly style is generated by setting646

P = 4, applying a first foundational painting pass consist-647

ing of uniform DAMs (V = (H//128 ⇤W//128)) and no648

segmentation distinction (Kp = 1 if p = 1). For p > 1, we649

activate segmentation layers, that is, Kp = |W (X)|, where650

X is the input image and | · | is the number of the segmen-651

tation layers; and switch to selective DAMs. The stroke652

budget T on each patch is limited to 16 except for the first653

and last passes which is 9.654

Abstract Styles Within the abstract style, our method can655

yield different degrees of abstraction. For simplicity, we656

grouped them together in the main paper. However, there657

are two fundamental differences in the way they work. Fig-658

ure 10 shows the two abstract styles. The expressionist style659

(a) is captured by the use of loose, efficiently optimized660

thick strokes with heavy texture. This produces a painting661

that prioritizes the effect and ambient of the scene by not662

caring too much about accurate shapes. The abstract style663

(c) is a looser representation than the painterly style, yet664

capturing shapes and subject matter better than the expres-665

sionistic abstract style.666

Given a segmentation network W , the expressionist style667

is generated by setting DAMs to uniform, stroke budget668

T = 9, P = 1, K = |W (X)|, where X is the input image669

and | · | is the number of the segmentation layers. The ab-670

stract style is achieved by setting DAMs to selective, P = 2,671

stroke budget T = [9, 16], V = [25, 25], and K = |W (X)|.672

6.3. Stroke Parameterization and Differentiable673

Renderer674

We use the differentiable renderer provided by [15], which675

consists of 3 fully connected layers of dimensionality 512,676

followed by convolutional layers, and a sigmoid nonlinear-677

ity function to obtain a 1⇥ 128⇥ 128 patch. A diagram of678

the architecture is shown in Figure 11.679

Each stroke is formally represented as st =680

(x0, y0, x1, y1, x2, y2, r0, r2, t0, t1, R,G,B), where (x, y)681

are the Cartesian coordinates of the curve’s control points,682

(r) denotes the radii at the endpoints, and (t) indicates the683

transparency levels. Typically, the transparency variables684

are set to unity, rendering all strokes opaque.685

In the rendering pipeline, given a stroke budget of T ,686

the parameters are either randomly or semi-randomly ini-687

tialized in the configuration space of dimensions T ⇥ 13.688

Subsequently, these parameters are fed into the differen-689

tiable rendering function G, which produces an array of T690

rasterized alpha strokes with dimensions 128 ⇥ 128. The691

Algorithm 2 Pseudo-code of our method.
1: procedure PAINT(imagePath, style)
2: painter  INITIALIZEPAINTER(imagePath, style)
3: Segment.LayersK  W (imagePath)
4: for p 1 to P do . Painting passes
5: for k  0 to K � 1 do . Painting layers
6: DAMs GETDAMS(mode, p, |V |)
7: canvasp  GETCANVAS(DAMs, p)
8: strokes INITSTROKES(DAMs, T, p)
9: strokes  

OPTIMIZE(strokes, canvas, style, k)
10: canvasp  

UPDATECANVAS(canvasp, strokes)
11: Append canvasp to allCanvasesL

12: end for

13: end for

14: COMPOSEFINALPAINTING(canvas)
15: return final painting
16: end procedure

17: procedure INITIALIZEPAINTER(imagePath,
parameters)

18: Process input image and set up canvas
19: Define renderer, segmentaiton network, and percep-

tual network
20: return painter object
21: end procedure

22: procedure GETDAMS(mode, p, V )
23: Computes DAMs based on mode and max number

V
24: return image X crops and DAMs coordinates
25: end procedure

26: procedure GETCANVAS(DAMs, p)
27: Crops canvasp based on DAMs
28: return canvas crops
29: end procedure

30: procedure INITSTROKES(DAMs, T ,p)
31: Initializes random stroke parameters based on

DAMS, T and p
32: return Stroke parameters
33: end procedure

34: procedure OPTIMIZE(strokes, canvas, style, k)
35: Optimizes strokes based on style parameteres
36: Perform rendering to compute loss
37: return strokes
38: end procedure

39: procedure COMPOSEFINALPAINTING(canvas)
40: Merge layers and apply final adjustments to canvas
41: Save final painting
42: end procedure

color channels are obtained by element-wise multiplication 692

of the alpha stroke with the respective RGB values. Each 693
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[Parameters] [13]

Fully Connected [512]

Fully Connected [512]

Fully Connected [512]

3x3Conv + 3x3 Conv + Sub- pixel
[128,128,1]

Sigmoid + Reshape 
[128,128]

Figure 11. Neural differentiable renderer architecture provided by
[15].

rasterized alpha stroke is sequentially composited onto the694

canvas in accordance with the blending equation:695

canvast = canvast�1 � alphat + stroket (3)696

Here, t represents the temporal index within the stroke697

budget T , alphat refers to the alpha channel generated by698

the differentiable renderer G, and canvast�1 denotes the699

canvas state prior to the incorporation of the new stroke.700

The initial canvas background is configured to be black701

across all experimental setups. The loss function L is com-702

puted between the reference image I and the finalized art-703

work CT , followed by the backpropagation of the gradient704

for parameter optimization. This cycle iterates until the op-705

timization algorithm converges to a stable state.706

6.4. Impact of Stroke Initialization707

Stroke initialization critically affects the algorithm’s perfor-708

mance. In its most rudimentary form, the algorithm ran-709

domly initializes stroke parameters, uniformly distributed710

within the range [0, 1]. In a more advanced form, we can711

evenly distribute the total number of strokes along the two712

dimensions of the canvas in the form of a grid. This is done713

by anchoring the middle brushstroke coordinates to such714

grid, and then control the length of the stroke and the po-715

sition of the start and end brushstroke coordinates using a716

Gaussian distribution. To illustrate, Figure 13 presents a se-717

ries of examples showcasing paintings rendered at 128⇥128718
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Grid stroke initialization

Random stroke initialization

128

12
8

Figure 12. Canvas composition by patches. (a) Patches are orga-
nized into a structured grid without overlaps. (b) Example of an
organization of patches in a structured grid with overlaps of 20
pixels. (c) Initialization of strokes before being optimized: strokes
are evenly distributed across the x and y axis of the patch (upper
part). Strokes are randomly sampled from a uniform distribution
(bottom part).

pixels with different stroke initializations and stroke widths. 719

These instances demonstrate that grid-based initialization, 720

combined with Gaussian-controlled stroke lengths, substan- 721

tially simplifies the optimization process. Intriguingly, al- 722

though random stroke initialization may yield lower L1 723

losses, it frequently results in less visually appealing out- 724

puts. 725

6.5. Patch Strategy and Stroke Initialization 726

Our method optimizes the stroke parameters of all N 727

patches in the general canvas in batch. Once the strokes 728

are optimized and all patches are painted using soft blend- 729

ing, we compose them back together with overlaps. For all 730

experiments we use overlap of 20 pixels, as shown in Fig- 731

ure 12 (b). 732

We also perform an analysis on the computational cost 733

in the number of patches and number of strokes. Figure 14 734

shows an analysis of the cost of increasing the number of 735

patches (left) and increasing the stroke budget (right). In- 736

creasing resolution to 4x results in a cost of 1.56x. The bot- 737

tleneck of SBR algorithms, regardless of whether we use 738

patch-based strategies or not, is the number of strokes be- 739

cause of its linear relationship. That is, doubling the number 740

of strokes results in double time to compute. This is be- 741

cause, generally, a blending operation is performed serially, 742

instead of in batch. We perform this analysis on a single 743

RTX A6000 Nvidia GPU. 744

6.6. Loss Ablation 745

We perform an ablation studies in loss functions. Gener- 746

ally, loss function, stroke model and number of strokes are 747

responsible for the outcome of a painting. In this section, 748

we analyze the impact of different loss function, see Fig- 749

ure 15. While L1 works fine for reconstruction (top row), it 750
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Figure 13. Difference of quality of paintings at 128x128 between random and grid stroke initialization. Top row corresponds to a grid
stroke initialization, bottom row corresponds to random stroke initialization. Columns correspond to clipping the maximum stroke width
the model is allowed to paint with: (a) no constraint, (b) maximum width 0.2*canvas size, (c) 0.1*canvas size and (d) 0.04*canvas size.
All paintings use 324 strokes, and L1 as pixel loss function. We let the optimization run for 800 iterations.

Figure 14. Patch and stroke cost. (a) Computational cost of painting by patches approach with a budget of 100 strokes per patch and 400
optimization steps. Each patch is 128x128. Increasing image size by double does not translate to a linear cost. (b) The computational cost
of increasing stroke budget is approximately linear. Computed on a single RTX A6000 Nvidia GPU.

seems unable to capture finer details. Adding a perceptual751

loss helps alleviates this issue. We try using CLIP [29] as752

a type of perceptual loss, but it seems to add some noise to753

the painting. Second and fourth rows use a small weight for754

perceptual and CLIP losses, resulting in imperceptible con-755

tributions. However scaling up the weight to 0.1 seems to756

work better for reconstructions, being the perceptual loss in757

the third row the one that achieves best reconstructions. For758

realistic paintings, we choose a combination of L1 + per-759

ceptual loss, computed as shown in Section 3.3 in the main760

paper. CLIP loss is calculated as follows:761

L = (CLIP (I)� CLIP (C))2 (4)762

where CLIP is the image encoder of the CLIP ViT-B/32763

model.764

7. Comparison with SOTA 765

We show more stroke distributions in Figure 16 across dif- 766

ferent subject matters. SNP and L2P present a more uni- 767

form distribution of strokes, barely differentiating between 768

semantic areas or objects in the scene. While L2P presents 769

a clear uniform distribution across the entire canvas, SNP 770

is able to scatterly capture some regions of interest, but still 771

suffer to bias the painting towards the main objects in the 772

scene. PT does the absolute opposite, that is, it fixates a 773

disproportionate amount of strokes to a specific area, which 774

does not match semantic regions, while leaving the rest of 775

the canvas with very few and big strokes. This is clearly 776

visible in the picture at the middle row. The distribution is 777

concentrated in a blob spanning the building and the pave- 778

ment equally. The same event happens in the last row where 779

the lake and the lavender flowers that are closer to the water 780
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Figure 15. Difference in loss functions. We show the difference in the outcome when using L1, perceptual loss and CLIP loss. A weight
of 0.01 seems very low for either perceptual or CLIP to make an impact. However, a weight of 0.1 makes the perceptual loss define some
fine details than L1 loss alone cannot (see definition in the toes). CLIP loss introduces some noise in the painting.

receive a higher quantity of strokes.781

Ours, however, sits in between L2P / SNP and PT. While782

focusing on a specific object in the picture, with semantic783

coherence, it is able to also distribute strokes on other im-784

portant areas of the picture. For instance, the bottom row785

shows how flowers, lake and mountains are better captured,786

while leaving sky with fewer strokes. In the case of the787

building, strokes are concentrated around it, since this is788

clearly the most important semantic part of the image. How-789

ever, our method is able to redirect its stroke distribution790

according to the user’s desire as shown in Figure 17. In this791

figure, we show a painting dissection based on our seman-792

tic segmentation pipeline. Except for last row, each column793

shows emphasis on a different k-th layer. The second row794

shows a distribution of all the strokes in the painting, while795

the fifth shows a distribution of only the strokes pertaining796

to each k-th layer.797

8. User Study 798

The user study is divided in two sections with 6 images 799

each. The first section evaluates realistic paintings, and asks 800

which painting is a better painting of an input image. The 801

second section evaluates visual appeal, and asks participants 802

to choose the painting that looks more natural and less com- 803

puter made. In total, we have 12 two-way side by side com- 804

parisons. The participants see first an input photograph, and 805

below the photograph we place a pair of paintings. We ask 806

to choose left or right painting. We compare our paintings 807

with three recent methods: an optimization-based method 808

“Stylized Neural Painting” (SNP) [41], a learning-based 809

method with Transformer “Paint Transformer” (PT) [23], 810

and a RL method “Learning to Paint” (L2P) [15]. We ran- 811

domize the order in which we show the pairings. 812

The complete user study is shown in Figures 24 to 26. 813

All four pairs from figure Figure 24 and the first two rows 814

in Figure 25 correspond to the first section of the user study. 815

These pairings correspond to the left side of Table 2 in the 816

main paper. IDs are Figure 24 top row: A5, second row: 817
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A3, third row: A4, fourth row: A6. In Figure 25, top row:818

A1, second row: A2. The last two rows of Figure 25 and819

Figure 26 belong to the second section of the study. They820

have the following IDs; Figure 25 third row: B1, fourth821

row: B5. Figure 26, from top to bottom: B3, B6, B2 and822

B4, respectively.823
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Figure 16. Stroke distribution analysis: SNP and L2P present a uniform distribution across the canvas. L2p is completely scene-agnostic,
and SNP cannot distinguish between semantic areas. PT presents a severe contrast between objects and background, and struggles to
differentiate between semantic areas of the image. Ours distribute strokes based on semantic areas.
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Figure 17. Painting analysis based on semantic layers and dynamic attention maps (DAMs). Top row shows DAMs per semantic layer k.
Second row shows the overall stroke distribution over the canvas based on biasing the painting towards different semantic areas, and the
third row shows the corresponding paintings. The fourth row shows each layer k independent from the rest of the painting. The fifth row
shows the Kernel Density Estimation of the strokes that correspond to only such layer k. The bottom row shows the semantic map, and the
four painting passes, from coarse to fine, with a bias on the vehicle over the rest of the scene.
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Figure 18. Comparison of our method (a) against L2P [15] (b) on realistic images. Note how L2P paintings have visible seams and blurry
areas.
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Figure 19. Comparison of our method (a) against PT [23] (b) and SNP [41] (c) on painterly images.
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Figure 20. Painterly style with dynamic attention maps corresponding to the last 3 painting layers are shown at the bottom.
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Figure 21. Painterly style with dynamic attention maps corresponding to the last 3 painting layers are shown at the left. Painting process is
shown at the right.
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Figure 22. Realistic Style (left) and painterly style (right). Dynamic attention maps for the last painting pass are shown as an inset.
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Figure 23. Realistic painting process. Painted using uniform dynamic attention maps. From coarse (top left) to fine (bottom right)
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Figure 24. Pairings shown in user study from section 1. IDs from top to bottom: A5, A3, A4, and A6
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Figure 25. Pairings shown in user study from section 1 and 2. IDs from top to bottom: A1, A2, B1, and B5
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Figure 26. Pairings shown in user study from section 2. IDs from top to bottom: B3, B6, B2 and B4
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